A felvezetőben említett cikk kivételesen nem a glifozát rákkeltő hatását firtatja - ami akár lehetséges is -, hanem egy másik problémát, a gyomrezisztenciát boncolgatja, mivel emiatt kellett kifejleszteni egy - szerintük még pusztítóbb - hatóanyagot, a dikambát. Az írás szerint a dikamba annyira gyilkos, hogy "a kísérletben a nem rezisztens, műanyaggal letakart(!) szóját is károsította a vetés után kiszórt növényvédő szer." Emiatt "tavaly az összes amerikai, nem rezisztens szójaültetvény 4 százaléka vált a dikamba-alapú gyomirtók áldozatává." Továbbá: a "Monsanto hivatalos magyarázata az volt a kialakult helyzetre, hogy a gazdák nem használták jól a szert." Lássuk, mi igaz a neten terjedő hírből.
1. A rezisztencia létező és természetes jelenség
Valóban vannak növényfajok, amelyek közül egyre több példány ellenáll a glifozátnak (és más gyomirtónak is). Ez egy olyan evolúciós versenyfutás, amiben az ember mindig csak egy aprócska lépéssel jár előrébb, mint a gyomok, de ugyanez igaz a betegségekkel vagy a kártevőkkel folytatott harcra is.
Egészen ternészetes, hogy
- minél nagyobb volumenben,
- minél hosszabb időn át,
- minél inkább egyetlen támadási pontra kihegyezve,
- és minél inkább a letális dózis alsó határán
alkalmazzuk ezeket a szereket, annál hamarabb jelenik meg egy olyan génverzió, amelyik dacolni fog a korábban hatásos molekuklával szemben.
A glifozát a növények aminosav-építésébe avatkozik bele, a levélre permetezve a gyökérbe is eljut, és 10-14 napon belül elszárítja a növényt (a napraforgóra éppen állományszárítási célból szokás kipermetezni).
Tehát a glifozátot széles körben használják a világon, legnagyobb mennyiségben a vasúti pályák gyommentesítésére, a mezőgazdaságban pedig főként a tarlók kezelésére fogy belőle jelentős mennyiség. A gyomirtás a parlagfű pollenszennyezését is meggátolja. A hatóanyag elterjedtsége miatt a rezisztens gyomok megjelenése szinte törvényszerű volt, főként azokban a térségekben, ahol olyan kultúrákat vetnek, amelyeket genetikailag ellenállóvá tettek ezzel az egyébként totális gyomirtóval szemben. A hatóanyag Európában 2022-ig rendelkezik felhasználási engedéllyel.
2. Mesterséges rezisztencia
Más gyomirtók a növények zsírsav- vagy aminosavszintézisébe, DNS-szintézisébe avatkoznak be, olykor egészen speciális pontokon. A rezisztencia azonban előbb-utóbb minden hatóanyaggal kapcsolatban kialakulhat. A Monsanto nem tett mást, mint mesterségesen ellenállóvá tette a szójáját a glifozáttal szemben, így a farmerek bármikor bátran lepermetezhették vele az állományt, nem állt fenn annak a kockázata, hogy a kultúrnövényt is károsítják vele. A gazdáknak nem kellett többé a növények fejlődési fázisát lesniük, attól rettegve, nehogy egy esőzés megakadályozza őket az időben elvégzett gyomirtásban. Egy rezisztens szójában - kis túlzással - minden időpont optimális a védekezésre. És hogy miért nem kapáltak inkább? Mert még ma is csak mutatóban léteznek olyan lézerszenzoros kultivátorok, amelyek körbekapálják a kultúrnövényt, és nemcsak a sorközökben irtják a gyomot.
Ha ezt soknak találjuk, akkor mit szóljunk az aminosavszintézist gátló herbicidekhez, amelyekkel szemben 160 gyomfajban találtak ellenálló egyedet?
3. Pusztító dikamba
Adikamba szintén az egyik legrégebben felfedezett hatóanyag a világon, de nem a glifozát hatástalansága miatt született meg, és egyáltalán nem "újgenerációs", ahogy azt a cikk állítja. Mára inkább "elöregedett" molekulának számít, de a hazai kínálatban még mindig több tucat ilyen hatóanyagú gyomirtó szerepel. Ezek a készítmények a növény levelére permetezve annak növekedésébe avatkoznak be, a hormonműködés megtámadásával. Hatásuk részben a talajon keresztül is érvényesül. Ám a glifozáttal ellentétben ez nem egy "totális" gyomirtó. Az egyszikűek (például a muhar fajok vagy a búza) ellen ugyanis nincs hatása. A kétszikűeket (például a pitypang vagy a szója) azonban valóban gyilkolja. A szója ráadásul hírhedten érzékeny a herbicidekre. A dikamba ellen nehezen alakul ki rezisztencia - különösen más hatóanyaggal kombinálva -, ezért máig sikeresen alkalmazzák olyan gyomok ellen, amelyek az aminosavszintézist gátlókra már rezisztenssé váltak.
3. Kulcsszó: hatásmechanizmus
A növény akár a talajon keresztül is felvehet annyi hatóanyagot, amennyi a fejlődését károsítja. Ezért fordulhatott elő, hogy a műanyaggal letakart szója is károsodott a cikkben említett kísérletben. Azon pedig végképp ne csodálkozzon a gazda, ha magát a szóját lepermetezve pusztulást lát. Akár glifozátrezisztens, akár nem az állomány, a dikambára mindenképpen érzékeny - hacsaknem egy olyan fajtáról van szó, amelyikbe ezt a rezisztenciát is beépítette a vetőmagtulajdonos. A magyar gazdák régóta használnak imidazolinon-rezisztens napraforgót, ennek gyomirtása is hasonló elven működik: Az "imis" állomány csakis a Pulsar nevű készítménnyel kezelhető, más hatásmechanizmusú kétszikűirtók (például dikamba) ugyanúgy kipusztítják a napraforgót, mint a gyomokat. Ez egy könnyen megtanulható szabály - aki egyszer is hibázott, sosem felejti el. Az amerikai esetekben valószínűleg nem is erről van szó, hanem a szomszédos táblákról sodródhatott át a szójaállományt károsító dikamba. Ezt támasztja alá az, hogy 2016-ban az Egyesült Államok környezetvédelmi hivatala (EPA) vizsgálatot indított a Monsanto korábbi, elsodródásra hajlamosabb formulációjának illegális használata miatt bekövetkezett káresetekkel kapcsolatban. A vegyipari óriás ezt követően egy kevésbé illékony formulációt engedélyeztetett 2016-ban.